Computer Hard Disk Drives

This week Seagate Technology re-released one of our videos to its subscriber base on YouTube. In 2014 as part of the Iron in our Electrical World series we covered magnetic hard disk drives as one of the many ways in which iron is used in electrical engineering.

Engineer Joanne Larson did an excellent job of walking the viewer through the parts and basics of how a HDD works. Here are some photos and some basics covered.

Read and write heads
Head stack assembly

While you may visualize a hard disk asĀ  silver-colored disk spinning with an arm reading it similar to a record player, it actually is an array of disks with many read and write heads on BOTH sides of the disk. This is done to maximize the read and write speed and the quantity of data which can be stored on the disk. Above you’ll see the arm separated from the assembly. The read and write heads are positioned near the tip of the arms. The idea of the array of disks goes back to the first HDD made in 1956.

Why is it called a “hard disk”?

OLYMPUS DIGITAL CAMERA
Floppy disks of different sizes on display at the Edison Tech Center

Today we use HDDs and solid state storage for computers. The disks are rigid and a fixture in a computer. But at one time we had “floppy” disk drives (FDD). Both floppy and hard disks coexisted occupying different uses for many years. The idea of the floppy disk came from magnetic video/audio tape and the hard disk drive. As you will see from our webpage on Magnetic Recording audio/video data is recorded in a medium filled with tiny soft iron pieces, the iron bits would align themselves according to how the write head (a magnet) aligned them. You will see the head also called a “transducer”. This alignment of magnetic “directions” can be read later on and converted into an analogue signal. IBM developed the 8″ floppy disk called the Memory Disk (80KB storage) in 1971.

Early engineers at IBM figured out how to use “reel to reel” magnetic tape (1951) to store binary data which had sections useful for given tasks that could be read later on by rushing through the tape to read from particular sections of the metallic tape. The problem with this is having to rewind/fast forward through tape. Transfer rates for the early tape started at 7200 characters per second. In comparison the common compact cassette tape used for music by the consumer had a transfer rate of 2000 bits per second.

A flat “disk” of the similar magnetic data could be read faster by allowing sections to be read by their address or position on the disk. IBM developed the hard disk in 1956. The disk was an array of 50 24″ disks which could hold 5 million digits of storage.

HDD density
As of 2014 300,000 tracks could be laid out on one inch of one side of the disk

The need for higher density of data storage lead to advancement in magnetic storage technology. The hard disk evolved as an aluminum disk (aluminum is light-weight and allows for high-speed rotation without warping) with a magnetic coating on the outside. Many alloys have been explored to attempt to create the highest density possible while keeping the storage stable over a relatively long time. The job of engineers is very tough in HDD design as work must be done on a microscopic level and one must work with many fields of engineering.

HDDsideDiagramlabelled700

WritePoleCloseup400
The write pole seen magnified 85,000 times. Some parts here are only a few molecules thick.

Materials engineers, chemical engineers, mechanical engineers, electrical engineers all must work together to create a product that is better than any other before it. Each year the frontier of what can be done is advanced. All this work occurs on its own plane separate from the common media buzz. While marketing for Apple and other companies love to simplify advancements and declare that “optical data storage is dead” or that magnetic storage is the past, this is simply noise and not engineering. Throughout history engineers have surprised everyone by taking older technologies and breaking through a barrier that had stopped people in the past, this can result in a leap beyond the current popular method. Sony, Seagate and others are continuing to make advancements in storage density that help create new uses for magnetic storage.

Now see the video below where Mrs. Larson explains the hard drive:

 

IronPromoMiniThe Iron in our Electrical World Program is a collaboration of the Minerals Education Coalition and the Edison Tech Center. In the program we highlight the importance of materials engineering, the role of iron in our society and how this material is used in technology design all around us.

MEC_Logo_Color-300

Videos About Steinmetz

Over the years the Edison Tech Center has made many videos which mentioned Charles P. Steinmetz. Many of you have only recently heard about this dwarf pioneer who revolutionized our world with his work on AC power. Not only Steinmetz’s direct work advanced technology, but his mathematics work which is still used today. Here are a list of the online videos we have published on Charles P. Steinmetz:

Steinmetz’s life before he joined General Electric and his career launch:

 

Steinmetz is hired in the US for the first time and founds the General Electric Research Lab with E.W. Rice Jr.:

 

Steinmetz’s pastimes: his 1914 Detroit Electric Car and his Canoe at the Edison Tech Center.

 

General video of photos and film of pioneers including Steinmetz:


 

The Metal Halide Lamp, found in almost every town and city in the world, developed by C.P. Steinmetz in 1912:



Old film Steinmetz: the Man Who Made Lightning (From the Schenectady Museum Archives)



Thanks for watching! Subscribe to our YouTube channel to keep in touch with our stream of videos.

Events at the Edison Tech Center

The Edison Tech Center in Schenectady has been host to many events over the years. This fall we look forward to a variety of events currently in planning. We will continue the film showings and Electric City Bike Rescue meetings as well as a few new things.

Looking back at last year we had a few events related to the International Year of Light. In December electrical engineer John D. Harnden Jr. made a presentation showing the latest and greatest of consumer light technology. Lighting collector and expert Rick DeLair conducted a video tour of his collection of lights including early Edison-era incandescents to huge rare street lights.

Last year was the 150th Steinmetz Day in April. Craig Cantello made a presentation on lighting technology for the event. Pioneer of microwave technology Rudy Dehn hosted an event in June for kids with a Van de Graaf generator and other cool teaching toys. Dr. Ron Fearing kicked off the spring with an event on robots engineered after insects. Dr. Fearing has a specialty in crawling and flying milli-robots.

The Edison Tech Center is often host to private group events such as Dr. Frank Wick’s engineering student’s events and local old age homes. If you’d like to bring a group to the Edison Tech Center please contact us and ask about our facilities. If you are interested in attending events the easiest way is to like us on Facebook where we post events. You can also check our Google Calendar on our page.

Our Facilities